; 计算
一个箭头
2↑3=2×2×2=8
2↑4=2×2×2×2=16
3↑3=3×3×3=27
a↑b=
很明显,一个高德纳箭头代表幂。2↑↑3=2↑2↑2(注意:此处要从右往左计算)=2↑4=16
3↑↑3=3↑3↑3=3↑27=
=7625597484987
4↑↑3=4↑4↑4=4↑256两个高德纳箭头代表幂塔。
三个箭头
2↑↑↑3=2↑↑2↑↑2=2↑↑(2↑2)=2↑↑4=2↑2↑2↑2=2↑2↑4=2↑16=65536
3↑↑↑3=3↑↑3↑↑3=3↑↑(3↑3↑3)=3↑↑(333)=3↑↑(327)
={3↑3↑3↑3......↑3}其中包含3(33)1个箭头,即76255974849871个箭头
={3(3(3(3(3(......)......)共7625597484987层的幂塔。
…“葛立恒数总共有64层,每一层中的箭头个数都由前一层得出。所以葛立恒数简单说来就是一个指数塔的指数塔的箭头塔。
那么葛立恒数到底有多大呢?没人知道,也没人知道这个数有多少位数字,甚至也没人知道葛立恒的位数的位数有多少位数(此处有阿伏伽德罗常数个“位数”)...我们只知道它的后几百位数,其中末位数是7。”
“这确实是一个恐怖的数字,但是它又是如何杀死敌人的呢?”
第二十五章:数学可杀敌(5)[2/2页]